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Abstract—In this paper, the deterministic and random vibration analysis of a nonlinear beam on
an elastic foundation subjected to a moving load, which may simulate railway track, runway, etc.
has been performed. The effects of longitudinal deflection and inertia have been considered so that
the coupled equations of longitudinal and transverse deflections can be derived based on Bernoulli-
Euler hypothesis. The randomness of the beam profile has been considered in such a way that the
mean line of the beam is variable with respect to position in the vertical plane and is superimposed
by stochastic uncertainty, and the moving load travels along the beam with constant velocity or
acceleration. The deterministic and statistical dynamic responses of the beam have been calculated
by using the Galerkin’s method in conjunction with the finite element method, and the derived
nonlinear system differential equation has been solved by using the implicit direct integration
method. In particular, the standard deviation of the transverse deflection of the nonlinear beam has
been calculated and presented by using the Monte Carlo simulation technique. Also, the distribution
of the midpoint deflection of the beam has been investigated by using the probability paper plot.

1. INTRODUCTION

The nonlinear vibration analysis of a beam has been performed by several researchers. Mei
(1972) studied the nonlinear vibration of the beams using the matrix displacement method.
Raju et al. (1976) adopted the Galerkin method with finite element method to investigate
the large amplitude-free vibration of tapered beams. Prathap and Bhashyam (1980) also
used the same method to study the nonlinear vibration of beams. Sato (1980) analyzed the
nonlinear vibrations of stepped thickness beams by the transfer matrix method. Hino ef al.
(1984, 1985) studied the nonlinear vibrations of variable cross-sectional beams subjected
to a moving load by using the Galerkin method with finite element method. Suzuki (1977)
investigated the dynamic behaviour of a finite beam subjected to a traveling load with
acceleration. However, all these papers were limited to the case where the loading condition
and the beam was analyzed deterministically. Fryba (1976) studied the nonstationary
response of a beam subjected to a moving random load. Yoshimura et al. (1988) used the
finite element method to perform the random vibration analysis of a nonlinear beam with
variable sectional areas subjected to a moving load.

The purpose of this paper is to perform the deterministic and random vibration analysis
of a nonlinear beam on an elastic foundation subjected to a moving load. The effects of
longitudinal deflections and inertia have been considered so that the coupled equations of
longitudinal and transverse deflections can be derived based on Bernoulli-Euler hypothesis.
The randomness of the beam profile has been considered in such a way that the mean line
of the beam is variable with respect to position in the vertical plane and is superimposed
by stochastic uncertainty, and the moving load travels along the beam with constant
velocity or acceleration. It should be noted that the above assumption will introduce the
nonstationarity to the whole system. The deterministic and statistical dynamic responses
of the beam have been calculated by using Galerkin method in conjunction with the finite
element method, and the nonlinear system differential equation has been solved by using
the implicit direct integration method. In particular, the standard deviation of the transverse
deflection of the nonlinear beam has been calculated and presented by using the Monte
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Carlo simulation technique. Besides, the distribution of the midpoint deflection of the beam
has been investigated by using the propability paper plot.

2. STATEMENT OF THE PROBLEM

2.1. System model

The stochastic beam on an elastic foundation is used to simulate train (or vehicle),
track and the foundation (Fig. 1). The rail-wheel contact is assumed to be at one point
only, the vehicle suspension system is idealized to consist of one linear spring and one
viscous damper, and the vehicle is modeled as a lumped mass.

The track is assumed to be a finite length slender beam of uniform cross-section and
density. The track mean line is variable in the vertical plane and is superimposed by random
unevenness. The vertical track profile, measured from a flat datum, may be expressed in
terms of x, the distance along the track, as

h(x) = hy () + I (x) = hm(x)+J eV do@), j=./-1, (1)

—

where £, (x) is a deterministic function representing the track mean, Agz(x) is zero mean

Deflected
Xm track

©)

Fig. 1. System model. (a) Vehicle model; (b) track profile and defiection ; (c) track and foundation
model.
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random process, Q is the spatial frequency, and Q(€) is an orthogonal function with the
properties

E[[dQQ)[] = p,, dQ = 0,E[[dQ(Q)) dQ*(Q,)[] = S, (Q1,22)0(Q; — Q) dQ, dQ,,
vy

where E(e) denotes the expectation, ,, is the mean value of /g (x), S, is the power spectral
density function of /z(x), 5(e) denotes the Dirac Delta function and the asterisk denotes
the complex conjugate.

The second derivative process of the track profile with respect to x should exist. The
form for the mean adopted in the present study is

n

ho(x) = Y h;sin2nx/L;, (3)
=1

here h; and L, are constants, which are selected to represent various mean shapes. Never-
theless any other acceptable expression can be used for the mean profile.
It is proposed to assume the homogeneous track power spectrum density as

Si () = A4, exp (—Q*/a?), )

where 4, and a are constants for a particular class of track.

In general, the train moves along the ground with variable velocity. Its position along
the track X,, at any instant t may be modeled as a polynomial in 7. The form adopted in
generating the results is

Xo(0) = bo+bi1+b,1, (%)

by, by, b, and b are constants selected to fit a motion train. Any other form considered
appropriate for train ground motion description can be used in place of eqn (5).

2.2. System equation

Again for Fig. 1, when the rotary inertia, shearing deformations and out-of-plane
motion for the track are neglected, the governing differential equations for the nonlinear
transverse and longitudinal deflections of the track, w, u, and for the deflections vertical to
the moving direction of the train, z,, are, respectively, as follows

u 0 ou 1 /ow\
pTATE ~ {EAT[a +5 (a) ]} =0, ()
0w Pw 0 ou 1 /ow\*|ow
EI& +pTAT§ rr {EAT[E + 5(@;) ]a—x} =f(x, ) —s(x, 1), )
mZ e (@ +w)+ki(z, +w—h) =0, ®)

where p; and A4; are the density and cross-section of the track, respectively, and E is

Young’s modulus, I the area moment of inertia, f(x, f) the impressed force on the track

and s(x, ) the restoring force distribution imposed by the foundation, 4 is the vertical track

profile, ¢, and k, are the damping and stiffness coefficients of the vehicle suspension system.
For the single-point rail-wheel contact
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fx, 0= —[c(z+W)+k (2 +w—h)]o(x— X,,), )]

where §(+) denotes Dirac Delta function.
The foundation reaction is given by

ow 0*w
s(x, [) = kFW+CF—0—t +ppAFa7, (10)

where pg is the foundation density, Af is the effective cross-section of the foundation, and
ke and cg are the effective foundation stiffness and damping coefficients per unit length.
The first term denotes the elastic force, the second the damping effect, and the third the
inertial contribution of the vibrating foundation.

Substitution of eqns (9) and (10) into eqn (7) yields

o'w  *w ow 0 ou 1 [ow\ ]ow
E]5x7+p—at7+Cp—6—t+kpw—b;{EAr|:a+§<g> :'—a;}

= —[e;@ + W) +k(z; +w—R)]d(x—X,), (11)

where p = ppAp+ prAr.
The boundary conditions for the simply supported track of length L are

2
u=0, w=0, EI(M
62

)=0 atx=0 and L
X

and the initial conditions for the track and the moving train at 1 = 0 are, respectively,

Ou ow dz
u=u(x), = =), w=wol), =), n=z, =4,

2.3. Finite element formulation

The finite element formulation is generally effective for obtaining approximate solu-
tions for complicated problems with high accuracy. Here, a Galerkin’s finite element
formulation is used.

Assume @i(x, f) and w(x, t) are the approximate solutions of u(x, t) and w(x, ), respec-
tively, and

a0 = 3 S0 = (S0 (12)

76,0 = 3 NS = N0} (13)

where the S;s and N;s are shape functions in an element, the ;s and ¢;s are unknown time
functions of nodal values, and m and n denote the number of nodes in the element. When
eqns (12) and (13) are substituted into eqn (6), the residual ¢, is defined as the difference
between the approximate and the exact solutions, the residual ¢, is similarly defined for eqn
(11). Galerkin’s method distributes the residuals over the element among the weighting
functions (S;s or N;s) such that
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f Se,dD, =0, i=12,...,m, (14)
D,

J Ng,dD, =0, i=1,2,...,n, (15)
Dl

i.e. the weighting functions S; and N, are orthogonal to the residual in the integral domains
D, and D, respectively.
The formulation for an optional element is as follows:

h - a0 ou ow B
L [S] {pTATE_EE{EATI:a +3 <3x> :I}}dx—(), (16)

(Low Pw o 8 on 1 (ow\ow
L [N] {EIE_“ +p— o +Cg 5o ar +kew— a {EATL? (a) :l—}—f(x t)}
a7

where f(x, ) = —[c,(z, +W) +k,(z, + w—h)}6(x—X,,) and H is the length of an element,
and T denotes matrix transposition. After partial integration has been applied to eqns (16)
and (17), the equation for all the elements of the beam are assembled, with account of
boundary conditions, and the finite element formulation in the spatial domain is then given
by

[MA){Y} +[KA{y} — {PF} =0, (18)

[MT{$} +[CT{¢} +[KT1{¢} +c\[N(x,)]"2, + Kk [N(x)] "z, — {F} = 0. (19)

Here [MA] is the axial mass matrix, [KA] is the stiffness matrix, {PF} is the axial force
vector generated by transverse deflections, [MT] is the transverse mass matrix, [KT] is the

stiffness matrix, [CT] is the transverse damping matrix and {F} is the load vector generated
by the moving load. These matrices and vectors are defined as follows:

NE (H
(MA] = zj [ST"pr A+[S] d,

=1Jo

dx,

k= 5 Jﬂdgsr EA, d(gS]

Jj=1

ey = = 3 [ EE earlstorr o) o

NE (‘H
MT] = ; J [N]"p[N]dx,
[CT] =[C]+[CP],

[C]= ZJ [NT"er[N]dx,

j=1J0

NE (H
[CP] = ZJ [NTTe,[N16(x —x,) dx = Z [N er [N(x,)],

i=1Jo j=1

[KT] = [KL]+[K]+[KG] +[KP],
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NE "HdZ[N]T dZ[N]
KL] = ———FEI———d
[ ] j;.‘() dx2 d.X?2

9

((H

K1= 3 | IN"kelM)dx,

_ ¥ [MdiNE diS 1 gy r AIVIT AINT ) IN]
k6] —,;1‘0 dx {EAT[ dx Wi+iel dx dx {¢}]} dx dx,
[KP1= Y | INT"K\[N1O(x—Xn)dx =} [N(x,)]"k [N(x,)],
i=1Jo j=1
(F} = ';Vf " [Nk B (x — X,,) dx = 'f NGk A, (20)

where NE is the total number of elements. When the moving train is located at a specified
element, the vector [N(x,)] is defined as

[NC) = [N1(x,)  Na(xy) Ni(xp) Na(x)l, (21)
where [N(x,)] is an elemental vector, and x, is defined as
x, = X,,— Htrunc (X,,/H), (22)

where trunc(-) denotes the integral part in the parenthesis. However, when the moving train
is located at all other elements except the specified element, [N(x,)] is

[N(x;)] =[0000]. (23)
Substituting egn (13) into eqn (8) gives the equation of motion for the moving train as
mzy+2+6 INOG)HY +hizy +h IV {d) = k. 24

Combining eqns (19) and (24) gives

[[MT] 0]{$}+[ [CT] cl[N(xb)]T]{cﬁ}
0 m, |2, ¢, [N(x,)] ¢ Zy
+[ [KT] knW(%)F]{d’}:{{F}} (25)

ki [N(x,)] k, Zy kih

Therefore, eqns (18) and (25) give the formulation in the spatial domain.

3. SOLUTION OF SYSTEM EQUATION

3.1. Linearized approximation by incremental form

It is generally suitable for multi-dimensional systems for non-linear equations to be
linearized by the incremental displacement method (Nickell, 1976). Equation (25) at time
t+ At is expressed as
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[M]1+At{d')}+[c]r+m{d)} +{R(1+Ar{®})} = t+At{F}’ (26)

where {®} = {¢, z,}", and {R} is a vector of restoring forces that depends upon the
displacement field.

If the vector {R} is differentiable in the neighbourhood of 21l deformed shapes {®},
then the expansion

{R(H-At{d)})} — {R('{@})}*}- M |{m}='{®} {Aq)}_i_l Q{R% |{¢}=,{0}{A(I)}2+...
o{@} 2\ 0{@}
27

is obtained, where {A®} = "*4/{®} —'{®} is the incremental displacement. Substituting eqn
(27) into eqn (26), defining the tangent stiffness matrix as

K] =

. (28)

f —f 1
{0} ="{®}

and neglecting the higher-order terms beyond the second derivatives gives the linearized
equation

[M])*4{®} +[C] {0} +[K1{AD} = ¥ {F} — {R({®})}. (29)
Equations (18) and (29) are solved at the same time by time integration operators.

3.2. Transitional analysis

The transitional responses of the derived systems are calculated by using the Newmark
method (Bathe et al., 1976). Before the incremental solution is carried out, the linear
constant structure matrices (i.c. the linearized effective stiffness, linear stiffness, mass and
damping matrices) and the load vectors are assembled. During the step-by-step solution,
the linearized effective stiffness matrix is updated for the nonlinearities in the system.

The incremental equilibrium equations at time ¢+ At are

[M],+Ar{q)}+[C]r+A1{(D}+1[K]{A(D} - t+At{F}_l{R}’ (30)

[MAY "2 () + [KAJ{AY} = 2 {PF} — [KAJ'{y/}. €2))

To improve the solution accuracy of the nonlinear eqn (30), it is necessary to carry out the
equilibrium iteration in each time step. The equilibrium equation is obtained as

[M]H—At{('l‘)}(n) + [C]t+Al{d)}(f) +1[K](i— 1){5¢}(i) — r+At{F} _I+AI{R}(1'71]’ i — 1’ 2, 3’ L
(32)
where "FA{D}O, FALPLD and (PO =+ PLU-D 4 (5B} are the vectors of accel-
erations, velocities and deflections at the ith iteration, respectively. The iterative com-
putation is continued until

{6}

< 33)
H1+A1 {(D}(f) “ (

is satisfied, where tol. denotes the tolerance and |e| denotes the Euclidean norm. Once the
transverse deflection at time ¢+Az, “**{®}, is known, ‘**{PF} can be calculated. As
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“+APF} is regarded as the axial force, the longitudinal deflections, velocities and accel-
erations, which correspond to “*4{y}, “*2{y} and “**{y}, respectively, at time ¢+ At are
obtained.

4. MONTE CARLO SIMULATION AND PROBABILITY PAPER

In this study, Monte Carlo simulation method is used to perform the statistical dynamic
analysis of the stochastic beam on the elastic foundation due to the complicated nature of
the present problem. In order to generate many different sample functions to describe the
fluctuation of the track, the random variable 4z (x) in eqn (1) can be generated by using the
following equation:

hR(x)==\/EgilAkcos<Qkx—-¢kx (34)

where

A= iV ShR(Qk)AQs (35)
Q = Q+(k—3)AQ, (36)

_(@.-Q)

AQ N

(37

where S, (€2;) is the one sided spectral density of the random variable &g, Q, is the upper
cutoff wave number of the spectral density, Q, is the lower cutoff wave number of the
spectral density, N is the total number of intervals in the discretization of the spectrum and
¢, is an independent random phase angle uniformly distributed between 0 and 27.

Using eqn (34), a large number, say N, of sample functions of the stochastic field
hr(x) can be generated, then different sample functions will produce different shapes of
track. Combining with the deterministic part of track A,(x) in eqn (1), the whole vertical
track profiles 4(x) for different samples are obtained, and the corresponding different load
vectors in eqn (24) can be easily constructed.

Since we have simulated the unevenness track profile, the dynamic track problem is
solved with aid of the Newmark integration algorithm N, times for different sample func-
tions of the stochastic functions field 4, (x). Based on all these different dynamic responses,
the statistical dynamic responses can be computed readily.

In the previous paragraph, we have discussed how to compute the statistical properties
of deflection. However, it is interesting to know what distribution of deflection is. There
are some methods which can accomplish the above task. In this paper, the probability
paper is adopted for determining the distribution of the dynamic response. The concept of
the probability paper is that a distribution function is represented by a straight line on
its associated probability paper. That is, if the distribution function associated with the
probability paper is really the population distribution function from which the random
processes are taken, then it is expected that these points are scattered around a straight
line within a reasonable small deviation. Hence, the distribution function associated with
probability paper is accepted as the population distribution unless those points are evidently
scattered around a curved line instead of a straight line.

5. NUMERICAL EXAMPLES AND DISCUSSIONS

In the present numerical calculations, the shape functions used in eqns (12) and (13)
are, respectively, given by
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X
=1-= 38
S, =1 o (3%)

S_X
Z_H,

_1 3x2 2%
M=lmp Ty

N ,’sz_i_x3
2 =X H Hz,

Ny=——+ . (39)

The initial conditions for the longitudinal and transverse deflections of the beam and
vertical deflections of the moving vehicle are assumed to be

up(x) = 1 (x) = 0,wy(x) = Wo(x) = 0,2, = 2, = 0. (40)

Nonlinear vibrations of the beam have been calculated for the following models :
Model 1: the longitudinal deflections and inertia are considered ;
Model 2: the longitudinal deflections are considered, but the longitudinal inertia is not
considered ; i.e.

O*u
prdr <E;) =0; (41)
and then
ou 1 [/ow\?
EAT[a + 3 (5)2) ] = constant ; (42)
Model 3: the longitudinal effects are not considered, i.e.
T\ o, 43
prAr ﬁ =0; 43)
and
Ju
—=0. 44
p 0 (44)

The linear model is also performed in this study.

Numerical results have been generated with the following system parameter values:
L =40.0 ft(12.19 m), £ = 3.0 x 10* ksi(2.068 x 10" Nm™2), 7 = 400.0 in*(1.66 x 10~* m*),
A1 = 0.5{t*(0.046 m?), pr = 15.2 slug ft ~(7840.2 kg/m ), A = 5.0 ft*(0.465 m?), px = 5.0
shug ft=3(2579.0 kg/m ™), k¢ = 1000.0 Ib ft 2 (47948.3 N m~?), m, = 40000.0 slug(585454.6
kg), k, =400000 Ib ft—' (584586.0 N m), o, = /k/m, =10 rad sec”',
L= 2mw, =0.02, wp = /ke/p = 5.54 rad sec™', { = cg/2pwp = 0.02, a=1.0 and
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Fig. 2. Spectrum density of random variable Ag(x).

S
o

A, = 0.0025 in® (4.10 x 10~% m?), where L is the length of the track, w, and wg are the
fundamental nature frequencies of the train and foundation, respectively, and {, and (g are
the damping ratios of the train and foundation, respectively. The total number of the finite
element NE is 80, i.e. the length of each element H is equal to 0.5 ft. In order to perform
Monte Carlo simulation, 100 different samples for the random variable Az (x) were gen-
erated using the procedure mentioned previously. Figure 2 shows the assumed shape of the
power spectral density function S, of the track profile 4y, and six sample functions of the
stochastic field Ay (x) are shown in Fig. 3.

Before the statistical analysis is performed, the deterministic analysis has been carried
out in order to get a better understanding of the problem. It should be noted that the
random variable Ag(x) is equal to zero for the deterministic analysis. Figures 4-7 present
the transverse deflection of the midpoint of the beam with respect to time due to various
constant velocities and accelerations. It is understood that the beam will be in the state of
free vibration when X,,/L > 1.0. It can be seen that the maximum deflection of the linear
model is always greater than those of others, which is quite reasonable, besides, model 1
and model 2 have the same trend during the defiected processes. Also, it can be seen from
Figs 4-7 that among those three nonlinear models, model 3 produced the largest maximum
transverse deflection w, while model 1 produced the smallest maximum transverse deflection
w.

The maximum deflections of the beam for various constant velocities for the four
models are shown in Fig. 8. It should be noted that the beam is considered with the
foundation and the mean profile of the track 4,(x) = sin 2zx/L ft. The maximum deflection
increases as the velocity gets faster until the velocity exceeds about 150 ~ 160 ft sec™'. As
discussed before, the linear model deflections are larger than those of the other models.

For stochastic analysis, the power spectrum density of the random process g is
assumed as the form in eqn (4). Figures 9-12 express the standard deviation of the transverse
deflection of the beam, which was attached with the foundation and the profile mean
hy(x) = sin2nx/L ft, with respect to time for various velocities and accelerations of the
train runs. The linear model still has the largest maximum standard deviation of transverse
deflection w, however, the range of standard deviation of defiections for model 3 is less
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Fig. 3. Six samples of stochastic track profile Ag(x).
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Fig. 4. The midpoint deflection of the beam with foundation, b = 0, b, = 0, b, = 120 ft sec™',
by = 0, ho,(x) = sin2nx/L ft.

than that of the other three models. Also, it can be seen from Figs 912 that among those
three nonlinear models, model 2 produced the largest maximum standard deviation of
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Fig. 7. The midpoint deflection of the beam with foundation, b = 2, b, = 0, b, = 80 ftsec™!, b, = 5
ft sec™2, hn(x) = sin2nx/L ft.

transverse deflection w, while model 3 produced the smallest maximum standard deviation

of transverse deflection w. It is quite interesting that the above results of stochastic analysis
are different from those of deterministic analysis.
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Fig. 9. The standard deviation of the deflection of the beam with foundation, b = 0,5, = 0, b, = 120
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To study the distribution of the statistical response, the goodness of fit is tested for
some cases such as normal and log normal distribution, by plotting the data on the
corresponding probability papers. In Figs 13 and 14, based on Monte Carlo simulation
analysis, 100 different values of midpoint deflection of the beam for the time X,,/L = 0.5
due to various velocities of the train for model 1 are plotted on the normal probability

paper. It can be concluded that the normal distribution fits best for the midpoint deflection
of the beam.

6. SUMMARY

In this paper, the nonlinear vibrations of the beam with the foundation due to a general
forward velocity of moving load, which can simulate the moving of trains or airplanes,
have been analyzed by using the Galerkin’s method in conjunction with the finite element
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Fig. 10. The standard deviation of the deflection of the beam with foundation, » = 0, by = 0,
b, =100 ftsec™!, b, = 0, h,(x) = sin 2nx/L ft.
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Fig. 11. The standard deviation of the deflection of the beam with foundation, b = 2, b, = 0,5, = 80
ft sec™!, b, = 10 ft sec ™2, h,(x) = sin 2nx/L ft.
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Fig. 12. The standard deviation of the deflection of the beam with foundation, » = 2,5, = 0, 5, = 80
ftsec™!, b, = S ft sec™?, h,(x) = sin2nx/L ft.

method. The derived nonlinear equations were linearized by using the incremental method,
and the transitional responses computed by the Newmark method. The responses at mid-
point of the beam for model 1 always have the smallest amplitudes as compared with those
for the other three models. The linear model, however, has the largest amplitude. The speed
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Fig. 13. One-hundred values for the midpoint deflection of the beam for model 1 plotted on the
normal probability paper, b = 0, b, = 0, b, = 120 ft sec™', b, = 0, h,(x) = sin 2zx/L ft.
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Fig. 14. One-hundred values for the midpoint deflection of the beam for model 1 plotted on the
normal probability paper, b = 0, b, = 0, b, = 100 ft sec™', b, = 0, h,(x) = sin 2nx/L ft.

of the train also has an important influence on the deflection of the beam. The faster the
speed of the train, the larger maximum deflection until the velocity exceeds about 150 ~ 160
ft sec™.

In order to have common discussions, the beam is superimposed by a zero mean
random roughness. The Monte Carlo simulation method is then used to perform the
statistical dynamic analysis of the stochastic beam on the elastic foundation due to the
complicated nature of the present problem. As discussed in the previous paragraph, the
standard deviation of the midpoint deflection of the beam for the linear model is always
the largest among those of the four models. Also, the distribution of the midpoint deflection
when the time for the train located at the midpoint of the beam, i.e. X, = L/2, is normal
since the distribution function is represented by a straight line on the normal probability
paper.

In future study, the stiffness of the track or the nature of the foundation can be assumed
randomly along the position. Besides, the cross-section of the track can be considered as
non-uniform.
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